Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Macrocalyxin I

Hao Shi, ${ }^{\text {a }}$ Yuan Jiang Pan, ${ }^{\text {a }}$ * Shi Hua Wu ${ }^{\text {a }}$ and Xiao Xiang Zhang ${ }^{\text {b }}$

${ }^{\text {a Department of Chemistry, Zhejiang University, Hangzhou 310027, People's }}$
Republic of China, and ${ }^{\mathbf{b}}$ Biomedical Engineering \& Instrumentation Science College, Zhejiang University, Hangzhou 310027, People's Republic of China
Correspondence e-mail: cheyjpan@public.zju.edu.cn

Received 13 August 2001
Accepted 2 November 2001
Online 22 December 2001
The title compound, 2-[1,2,3,4,4a,4b,5,6,7,8,8a,9-dodecahydro-7-hydroxy-4b,8,8-trimethylphenanthren-2-yl]propenoic acid, $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$, is a naturally occurring diterpenoid which was isolated from Rabdosia macrocalyx. The hydroxy and carboxy groups, which are located at the two ends of the molecule, both serve as simultaneous hydrogen-bond donors and acceptors. Two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present and link each molecule to four neighbours, thus forming an extensive hydrogen-bond network within the crystal.

Comment

Rabdosia macrocalyx is widely distributed in Anhui, Jiangsu, Zhejiang, Jiangxi, Fujian, Hunan, Guangdong, Guangxi and Taiwan provinces, China, where it has been used as a folk medicine. Its decoctions are used as antibiotics and for antitumor treatment. Macrocalyxins A, B (Cheng et al., 1984), C (Wang et al., 1984), D (Wang et al., 1985), E (Wang et al., 1986), F, G and H (Wang et al., 1995) have been isolated previously from this plant. In order to isolate more bioactive constituents, we investigated the whole herb of Rabdosia macrocalyx, which led to the isolation of the title compound, the natural diterpenoid macrocalyxin I, (1), which was isolated from Rabdosia macrocalyx Hara for the first time. Its structure was established from spectral evidence and was confirmed by the present X-ray diffraction study.

(1)

The molecule of (1) (Fig. 1) is composed of three sixmembered rings. Rings $A(\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 10)$ and $C(\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 12-$ C14) adopt a chair conformation, with mean torsion angles of 51.4 and 52.4°, respectively. Ring $B(\mathrm{C} 5-\mathrm{C} 9 / \mathrm{C} 10)$ adopts a

Figure 1
View of the title molecule showing the atomic numbering scheme and 50% probability displacement ellipsoids.

The intermoleculer hydrogen bonding in (1) viewed normal to the (001) plane. H atoms have been omitted for clarity, except for those involved in hydrogen bonds, which are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
half-chair conformation owing to the double bond between C 7 and C8. The stereochemistry of the A / B ring junction is trans, and the dihedral angle between rings A and B is $17.60(5)^{\circ}$; the

Figure 3
The crystal-packing diagram for the title compound viewed down the c axis. H atoms have been omitted for clarity, except for these involved in hydrogen bonds.
dihedral angle between rings B and C is $14.92(7)^{\circ}$. The configurations at the other chiral centers are as follows: $\mathrm{C} 3-\mathrm{OH}, \mathrm{C} 10-\mathrm{Me}, \mathrm{C} 9-\mathrm{H}$ and $\mathrm{C} 13-\mathrm{H}$ are axial and the 1-carboxyethenyl group at C 13 is equatorial.

The $\mathrm{C} 17-\mathrm{C} 15-\mathrm{C} 16-\mathrm{O} 2$ torsion angle has a value of 172.4 (3) ${ }^{\circ}$ because of the conjugated double bound. The best least-squares plane formed by atoms C17/C15/C16/O2/O3 has a maximum deviation of $0.0592 \AA$, and the dihedral angle between this plane and ring C is $114.22(11)^{\circ}$. The hydroxy group located at C3 and the carboxy group located at C15 participate in hydrogen bonding. Both groups serve as simultaneous hydrogen-bond donors and acceptors. Two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) are present and link each molecule to four adjacent neighbours (Fig. 2). The overall result is an extended hydrogen-bonding network throughout the structure (Fig. 3).

Experimental

Dried powder (7.5 kg) of the whole herb of Rabdosia macrocalyx was soaked three times with $95 \% \mathrm{EtOH}$ at room temperature. The solvent was removed by evaporation at reduced pressure, and the residue was successively fractioned with petroleum ether, EtOAc and n - BuOH . The residue of the EtOAc fraction was subjected to column chromatography over silica gel. The column was eluted with a petroleum ether-EtOAc mixture. The crude compound was purified by column chromatography on silica gel with an acetone-chloroform mixture, producing 210 mg of macrocalyxin A and 60 mg of the pure title compound, (1) [m.p.: $\left.490.5-492.5 \mathrm{~K}\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\right] .{ }^{13} \mathrm{C}$ NMR (125 MHz , pyridine): δ (p.p.m.) 169.8 (C16), 147.5 (C15), 137.2 (C8), 121.7 (C17), 121.2 (C7), 75.1 (C3), 52.4 (C9), 44.3 (C5), 41.7 (C6), 39.7 (C13), 37.5 (C4), 35.3 (C10), 32.3 (C14), 32.2 (C12), 29.3 (C19), 26.4 (C11), 25.7 (C1), 23.3 (C2), 23.1 (C18), 15.3 (C20). Crystals suitable for X-ray structure analysis were obtained by slow evaporation from an aqueous solution in chloroform and methanol (1:1) at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$
$M_{r}=318.44$
Monoclinic, C2
$a=24.066$ (2) A
$b=10.017$ (1) \AA
$c=7.608$ (1) \AA
$\beta=101.35(1)^{\circ}$
$V=1798.2(3) \AA^{3}$
$Z=4$

Data collection

Siemens $P 4$ diffractometer ω scans
2311 measured reflections
2178 independent reflections
1605 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.097$
$S=0.98$
2178 reflections
214 parameters
H -atom parameters constrained
$D_{x}=1.176 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=3.3-12.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Prism, colorless
$0.50 \times 0.50 \times 0.40 \mathrm{~mm}$

$$
\begin{aligned}
& h=0 \rightarrow 31 \\
& k=0 \rightarrow 13 \\
& l=-9 \rightarrow 9 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 1.3 \%
\end{aligned}
$$

[^0]Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 3$	$1.432(3)$	$\mathrm{C} 13-\mathrm{C} 15$	$1.512(3)$
$\mathrm{O} 2-\mathrm{C} 16$	$1.217(3)$	$\mathrm{C} 15-\mathrm{C} 17$	$1.310(4)$
$\mathrm{O} 3-\mathrm{C} 16$	$1.320(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.479(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.320(3)$		
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$109.2(2)$	$\mathrm{O} 2-\mathrm{C} 16-\mathrm{O} 3$	$121.8(2)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$108.4(2)$	$\mathrm{O} 2-\mathrm{C} 16-\mathrm{C} 15$	$123.2(2)$
$\mathrm{C} 17-\mathrm{C} 15-\mathrm{C} 16$	$119.4(2)$	$\mathrm{O} 3-\mathrm{C} 16-\mathrm{C} 15$	$115.0(2)$
$\mathrm{C} 17-\mathrm{C} 15-\mathrm{C} 13$	$124.9(2)$		
$\mathrm{C} 17-\mathrm{C} 15-\mathrm{C} 16-\mathrm{O} 2$	$172.4(3)$	$\mathrm{C} 17-\mathrm{C} 15-\mathrm{C} 16-\mathrm{O} 3$	$-7.8(4)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.85	$2.662(3)$	169
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} \cdots 2^{\mathrm{ii}}$	0.82	1.97	$2.771(3)$	164

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}+y, z$; (ii) $\frac{3}{2}-x, y-\frac{1}{2}, 2-z$.

H atoms were placed in geometrically calculated positions and included in the final refinement as riding, with $U_{\text {iso }}$ values equal to $1.2 U_{\text {eq }}$ of the carrier atom. An attempt to establish the absolute configuration failed. The Flack (1983) parameter obtained was -0.9 (16). The Friedel pairs were merged before the final refinement and only the relative stereochemistry is shown in the Scheme and figures.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Siemens, 1991); software used to prepare material for publication: SHELXTL/PC.

This project was supported by the Natural Science Foundation of Zhejiang province.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1347). Services for accessing these data are described at the back of the journal.

References

Cheng, P. Y., Lin, Y. L. \& Xu, G. Y. (1984). Yaoxue Xuebao, 19, 593-598. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1991). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.10b. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, X. R., Wang, H. P., Hu, H. P., Sun, H. D., Wang, S. Q., Shinichi, U., Yoshihiro, K. \& Tetsuro, F. (1995). Phytochemistry, 38, 921-926.
Wang, X. R., Wang, Z. Q. \& Dong, J. G. (1985). Zhiwu Xuebao, 27, 285-289.
Wang, X. R., Wang, Z. Q. \& Dong, J. G. (1986). Zhiwu Xuebao, 28, 415-418.
Wang, X. R., Wang, Z. Q., Dong, J. G. \& Xue, Z. W. (1984). Zhiwu Xuebao, 26, 425-427.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0509 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\text {max }}<0.001$
 $\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{-3}$
 $\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.035 (2)

